
Cornucopia Reloaded: Load Barriers for CHERI Heap
Temporal Safety

Nathaniel Wesley Filardo
Microsoft
Canada

Brett F. Gutstein
University of Cambridge

UK

Jonathan Woodruff
University of Cambridge

UK

Jessica Clarke
University of Cambridge

UK

Peter Rugg
University of Cambridge

UK

Brooks Davis
SRI International

USA

Mark Johnston
University of Cambridge

UK

Robert Norton
Microsoft

UK

David Chisnall
SCI Semiconductor

UK

Simon W. Moore
University of Cambridge

UK

Peter G. Neumann
SRI International

USA

Robert N. M. Watson
University of Cambridge

UK

Abstract
Violations of temporalmemory safety (“use after free”, “UAF”)
continue to pose a significant threat to software security.
The CHERI capability architecture has shown promise as a
technology for C and C++ language reference integrity and
spatial memory safety. Building atop CHERI, prior works –
CHERIvoke and Cornucopia – have explored adding heap
temporal safety. The most pressing limitation of Cornucopia
was its impractical “stop-the-world” pause times.

We present Cornucopia Reloaded, a re-designed drop-in
replacement implementation of CHERI temporal safety, us-
ing a novel architectural feature – a per-page capability load
barrier, added in Arm’s Morello prototype CPU and CHERI-
RISC-V – to nearly eliminate application pauses. We ana-
lyze the performance of Reloaded as well as Cornucopia
and CHERIvoke on Morello, using the CHERI-compatible
SPEC CPU2006 INT workloads to assess its impact on batch
workloads and using pgbench and gRPC QPS as surrogate in-
teractive workloads. Under Reloaded, applications no longer
experience significant revocation-induced stop-the-world
periods, without additional wall- or CPU-time cost over Cor-
nucopia and with median 87% of Cornucopia’s DRAM traffic
overheads across SPEC CPU2006 and < 50% for pgbench.

This work is licensed under a Creative Commons Attribution International 
4.0 License.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0385-0/24/04.
https://doi.org/10.1145/3620665.3640416

CCS Concepts: • Software and its engineering→ Soft-
ware safety; • Security and privacy → Operating sys-
tems security; • Hardware→ Emerging architectures.

Keywords: capability revocation, CHERI, temporal safety,
use after free

ACM Reference Format:
Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan Woodruff, Jes-
sica Clarke, Peter Rugg, Brooks Davis, Mark Johnston, Robert Nor-
ton, David Chisnall, SimonW.Moore, Peter G. Neumann, and Robert
N. M. Watson. 2024. Cornucopia Reloaded: Load Barriers for CHERI
Heap Temporal Safety. In 29th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 2 (ASPLOS ’24), April 27-May 1, 2024, La Jolla, CA,
USA. ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/
3620665.3640416

1 Introduction
Many programming languages offer an object-centric model
of memory. New objects, initially unrelated to existing ob-
jects, are allocated on demand, used, and then released (im-
plicitly and/or explicitly depending on the language). Low-
ering the language’s model to the underlying architecture,
most often built around a coherent, integer-indexed array of
memory words, is generally not fully-abstract; it becomes
possible to 1 confuse integers, object references, and mem-
ory indices that do not point to valid objects (such as those
used internally by thememory allocator), risking reference in-
tegrity violations; 2 access adjacent objects, reaching beyond
the bounds of a referenced object, violating spatial safety;
and/or 3 access an object after its life ended (“use-after-free”,
“UAF”) or after the underlying memory has been repurposed
(“use-after-reallocation”, “UAR”), violating temporal safety.
These affordances beyond the programmer’s intent continue
to pose a significant threat to software security [17, 35], and

251

https://doi.org/10.1145/3620665.3640416
https://doi.org/10.1145/3620665.3640416
https://doi.org/10.1145/3620665.3640416
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3620665.3640416&domain=pdf&date_stamp=2024-04-27


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Filardo et al.

a wide variety of languages, compilation approaches, and
runtime strategies have emerged in response.
The CHERI [53] capability architecture, summarized in

§2.1, has shown promise as a technology for C and C++ lan-
guage reference integrity and spatial safety, with overheads
acceptable for general-purpose computing [51]. Strategies for
C/C++ heap temporal safety atop CHERI have emerged, most
notably CHERIvoke [58] and its successor Cornucopia [23],
suggesting viability of a sweeping revocation approach (§2.2).
Revocation, in this sense, ensures that use-after-free will

never alias a different (later) allocation. It does so by delaying
reuse of freed address space (said to be in quarantine; see
§2.2.2) until all references to freed objects have been deleted
from memory. Revocation is similar to garbage collection
(GC), in that it makes address space available for subsequent
reuse; unlike GC, revocation reclaims only explicitly released
memory and does not discover unreferenced objects. That
is, while garbage collection uses a graph walk to find and
subsequently recycle address space to which no (mutator)
references exist, revocation knows, ahead of time, how much
address space will be reclaimed and does not need to chase
pointers, but merely to test all references in the system. Still,
revocation can, as shown by Cornucopia and now this work,
use mechanisms inspired by performant collectors (§2.3).
While Cornucopia’s aggregate overheads may be tolera-

ble for high-security workloads, its sizable application pause
times (“stop-the-world” phases) still likely limit its use to
non-interactive high-security workloads. Targeting this short-
coming, we exploited recent extensions to the CHERI archi-
tecture and built Cornucopia Reloaded, or just Reloaded, a
drop-in replacement for Cornucopia’s in-kernel component.
The key architectural feature is a per-page capability load
barrier (§3.2), supporting a fast global enablement (§4.1).
Reloaded uses this, in tandem with an improved form of
Cornucopia’s capability dirty tracking (§4.2), to replace Cor-
nucopia’s operational core. We analyze its performance as
well as (re-implementations of) Cornucopia and CHERIvoke
on Morello [10], which has, along with CHERI-RISC-V and
the Toooba prototype [44], been extended with this load
barrier. We use the CHERI-compatible SPEC CPU2006 INT
workloads to assess its impact on batch workloads (§5.1) and
use pgbench as a representative interactive workload (§5.2).
Our evaluation (§5.4) found that Cornucopia Reloaded

achieves its goals: Applications no longer experience signifi-
cant revocation-induced global stalls; the system incurs no
additional wall- or CPU-time cost, relative to Cornucopia;
and this new approach uses less bus traffic for revocation.
If the modest additional hardware support can be provided,
Reloaded should be considered a strict improvement for UAR
mitigation. We close with related (§6) and future (§7) work.

2 Background
2.1 CHERI
CHERI [53] is a modern memory capability architecture.
It replaces an instruction set’s use of integer addresses as
pointers with capabilities, a distinguished architectural type;
dereference operations now require an authorizing capability,
and not merely an integer memory address. For our purposes,
CHERI has three salient features: 1 capabilities carry bounds
information, limiting the range of addresses to which they
authorize access, 2 capabilities may be constructed only
from a superset capability, and 3 software can perfectly
distinguish valid capabilities from non-capability data.
Adopting CHERI has consequences above and below the

ISA boundary. Below, machinery is required to associate
“tags” with memory words, distinguishing well-formed capa-
bilities frommere bit sequences [30]. Above, when compiling
C/C++ to a CHERI architecture, all pointers lower to capa-
bilities [55].1 Operating system, library, and ABI changes
must be made [22]. Of particular relevance to this work, a
CHERI-enlightened heap memory allocator (malloc) will ap-
ply bounds to the pointer returned.2 Assuming correctness
of the allocator, these bounds prevent returned pointers from
being used to read or write objects elsewhere in memory.3

2.1.1 Morello. Morello [10] is the umbrella term for an ex-
perimental CHERI-augmented ARM architecture and its im-
plementation SoC and board. (Specifically, it modifies the 64-
bit ARMv8.2 architecture and the Neoverse N1 SoC and ref-
erence platform.) The Morello SoC has four cache-coherent
cores, clocks at 2.5 GHz, supports 64 GiB of ECC DDR RAM,
and has modern high-speed peripheral busses (PCI-e, CCIX,
SATA, USB, etc.). That is, it is a modern desktop or server
computer, while other CHERI implementations were and are
in-FPGA prototypes, with all the attendant caveats. Our eval-
uation on Morello thus gives the most realistic assessment of
upper bounds for costs of establishing heap temporal safety
atop CHERI desktop- or server-class systems.

2.2 Global Subset Capability Revocation
Across a general computing system’s operation, it will repur-
pose address space and memory to represent a sequence of
distinct logical objects. Temporal safety, in its most general

1There is also a “hybrid” C/C++ dialect, wherein only explicitly annotated
pointers lower to capabilities. The use of this mode is discouraged: juggling
two different kinds of pointers, and understanding their interactions, ap-
pears rarely worth the effort. We deal exclusively with the “pure capability”
dialect and need not distinguish language-level pointers and architectural
capabilities. Capability revocation (§2.2) could be used with hybrid mode
code, albeit with much weaker safety properties, as with spatial safety.
2Globals and stack allocations may also have bounds applied, especially
when pointers to these become visible values in the source program and
escape the compiler’s analysis. Ensuring safety of these references requires
cooperation between the compiler, the linker, and the loader.
3Of course, if one piece of software holds capabilities to two adjacent regions,
it may write to both, but within bounds of the cited capabilities.

252



Cornucopia Reloaded ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

form, is assurance that this reuse is not (meaningfully) visible
to the software that the system runs.4 Some systems ensure
temporal safety using so-called linear or affine references,
which cannot be copied; this ensures that no aliases exist
when the reference is returned, and so the underlying re-
source is safe to reuse. Rust uses this technique to constrain
its mutable references [45, §10.1.13].

Capability systems generally have considered such tempo-
ral safety to be a special case of “the revocation problem”, al-
lowing software to retract delegations of access to resources.
Traditionally, the desideratum has been hierarchical revoca-
tion, selectively pruning entire branches of the delegation
tree; this necessitates explicitly tracking capability prove-
nance (the list of ancestor capabilities fromwhich a capability
is derived).5 Temporal safety can be built atop hierarchical re-
vocation by having the primordial resource allocator revoke
its initial return: all aliases will, by assumption, be pruned
by revocation, making reuse safe. However, for performance
and compatibility with modern (micro)architectures, CHERI
does not explicitly track provenance of its copyable, non-
indirected capabilities, and so hierarchical revocation would
require additional software artifice.

Fortunately, (heap) temporal safety does not require hier-
archical revocation; it suffices for the heap allocator to be able
to globally revoke all references derived from a particular al-
location. Moreover, while CHERI does not track provenance,
there is still an implicit relation: capabilities with smaller
bounds must be descended from one with broader bounds.
Since a heap allocator will (internally, inaccessible to clients)
retain capabilities that span the entire heap, it can demon-
strate its progenitor claim to the heap address space also
used for a particular allocation as grounds for revocation
of the latter. All that remains is to introduce a revocation
mechanism receptive to such claims.

2.2.1 CHERIvoke and Cornucopia. CHERIvoke [58] is a
limit study of sweeping revocation algorithms that globally
revoke selected CHERI capabilities from a process’s address
space. Cornucopia [23] is an implementation and extension
of CHERIvoke; it encompasses an in-kernel revoker subsys-
tem and enlightened user-space allocators, offering heap
temporal memory safety within CheriBSD for CheriABI pro-
grams [22]. Beyond CHERIvoke, it introduces concurrent and
parallel execution of application threads and the revoker.

4In practice, we focus more on access to reused resources through stale
references than on ensuring that reuse is indistinguishable. In the present
work, for example, we tolerate software being able to extract addresses from
capabilities and notice that address space has been reused, but we ensure
that capabilities to old objects are invalidated before the reuse takes place.
5This tracking typically uses indirection, with capabilities pointing to their
progenitor with (cached) tree ascent on use. Such indirection can be either
defined explicitly, as in CAP’s tables [37] or seL4’s capability derivation
tree [21, §2.4.1], or endogenous, as in trusted “caretaker” objects [42, §2.3].

2.2.2 Quarantine andRevocationBitmaps. Both CHERI-
voke and Cornucopia are based around batched revocation,
as it is prohibitively expensive to sweep all of a process’s
memory after every free. Between being passed to free()
and being available for reuse, a region of address space is
held in quarantine. Address space lingers in quarantine
until the allocator can be certain that no external references
thereto exist, that is, until after global revocation. Sizing of
quarantine (and decisions of when revocation will occur) is a
matter of user policy. The simplest policies are fixed absolute
size or fraction of allocated heap memory, as used below.

A pointer to quarantined memory may be dereferenced for
an indefinite amount of time, depending on when revocation
runs, the pointer’s location in the machine, and the details of
the revocation algorithm, but certainly not after a subsequent
revocation has completed.6 That is, use-after-free is possible
and will continue to access the old object, as if its lifetime
extended until revocation; use-after-reallocation is ruled out.
In general, the goal of an attacker, given a use-after-free

primitive, is to leverage the allocator against the application
or its runtime. Staying strictly within the UAF regime, before
reuse, the allocator has not yet aliased the free object, with
either another application object or allocator internal state;
in CHERIvoke designs, the allocator is permitted to unmap
quarantined memory, but “poisoning” or zeroing of freed
memory is deferred until reuse.7 We thus believe the presence
of a UAF/UAR gap is a tolerable security/performance trade-
off, but see §7.3 for one approach to closing the gap.
A revocation pass needs to know which capabilities to

revoke. CHERIvoke suggests articulating this set by use of
a revocation bitmap (sometimes “shadow bitmap”). Each
capability-sized naturally aligned region of the address space
has a corresponding bit in the bitmap (the same density as
CHERI tags).8 A set bit in the bitmap indicates that capabili-
ties pointing to the corresponding address are to be revoked.9
In Cornucopia, this bitmap is a kernel-provided anonymous

6This is akin to the “from” spaces of incremental, moving garbage collectors,
which, aside from the complexity of forwarding pointers, remain accessible
to the application until collection is completed [32].
7There are three motivations for such deferral: 1 theoretical: it simplifies
the claim that object lifetimes have been extended; 2 performance: zero-
ing cannot be relied upon during reuse and so would need to be redone;
and 3 implementation: the underlying allocators have not been aware of
quarantine and do, indeed, consider the objects’ lifetimes extended.
8By contrast, a garbage collector may have a “mark” bit, or a few “color”
bits, per object, rather than per pointer, in memory. The collection algorithm
may also allocate mark or color bit(s) within pointer values. Neither of these
are exactly analogous to the revocation bitmap, though the per-object bits
are indeed used as part of object lifecycle management.
9As capabilities can point out of bounds, revocation tests the bit correspond-
ing to the capability base (lower bound), rather than its address (pointer
target). The CHERI instruction set ensures that capability bases cannot be
taken out of bounds without rendering the capability useless; this property
has been formally verified for Morello [12]. An allocation is placed into
quarantine by setting all of its corresponding revocation bits; any valid
capability derived from this allocation will then be subject to revocation.

253



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Filardo et al.

object in virtual memory, written to (“painted”) by the user
program’s allocator(s) and read by the kernel.10

2.2.3 Revocation Epochs. Processing a batch of revoca-
tions is done in a revocation epoch. The central guarantee
of the revocation process is: all capabilities to memory that
is marked in the revocation bitmap as quarantined prior to
an epoch’s start are guaranteed to have been expunged as of
the epoch’s end.11 For CHERIvoke’s stop-the-world, synchro-
nous revocation model, this is almost trivial.12 However, for
Cornucopia’s concurrent revocation, it is quite common for
memory to be freed during a revocation scan. Such memory
must be held through the end of next epoch, before it can
be dequarantined. (During the first epoch, the revoker may
have let through a pointer that would be revoked if seen
after the update to the bitmap.) Any time after the end of
the revoking epoch, memory can be dequarantined.
Cornucopia exposes a publicly readable epoch counter,

initialized to zero and incremented prior to the start of every
revocation and again after the end. Allocators mark freed
memory in the bitmap, read the epoch, and wait for the
counter to be advanced at least twice (if initially even) or
thrice (if odd), to ensure that at least one revocation has both
begun and ended, before reusing that memory.

2.2.4 Capability-Dirty Pages. CHERIvoke observes that
many pages within application memory do not hold capa-
bilities. Revocation need not consider such pages, and so
Cornucopia sought and found a fairly light-weight way of
monitoring capability propagation within an address space.
Since at least version 7, CHERI-MIPS offered traps on tagged
capability stores on a per virtual page basis [54]. This was
intended largely as a security feature to prevent the spread
of tagged capabilities through certain kinds of inter-process
shared memory, such as file mappings.13 Cornucopia repur-
poses this mechanism to track which pages hold capabilities
10Cornucopia provided capability-based access control to the bitmap [23,
§A], granting allocators access only to the parts of the bitmap correspond-
ing to their heaps. However, for expedience, both Cornucopia’s and our
experiments unsafely bypass these controls, easing the use of a shim, rather
than Cornucopia-aware allocator, to manage revocation. We expect the cost
of the shim to exceed the cost of an enlightened allocator’s bookkeeping.
11In garbage collection, the analogous property, dubbed “snapshot at the
beginning”, is that the objects whose last reference(s) were dropped prior
to a collection’s start will be reclaimed during the collection.
12If there is only one user of revocation in an address space, it is trivial.
But, because revocation is global, multiple allocators may be able to avoid
redundant work by using epochs to observe that some other allocator has
triggered revocation [23, §B].
13CHERI capabilities are interpreted relative to an address space. In the
UNIX-like environment of CheriBSD or Linux, that means that capabilities
are only well-defined within a process. Allowing processes to exchange
tagged capabilities risks violating the security properties of the capabil-
ity model, though it is currently tolerated in some circumstances, such as
fork()-ed processes sharing anonymous memory mappings, for compati-
bility reasons. Because shared file mappings can spread much more widely,
especially between processes with no pretense of commonality in their
address space layouts, they are prohibited from carrying tagged capabilities.

at the start of revocation (and so must be visited during
revocation) as well as the subset of pages to which capabili-
ties have been written during concurrent revocation (and so
must be re-visited once its world is stopped).

2.2.5 Revocation Phases. A direct implementation of
CHERIvoke stops the world to let the revoker operate on a
snapshot of memory. Cornucopia instead splits each revoca-
tion epoch into two phases: 1 a concurrent phase, in which a
second CPU core visits (and marks clean) all dirty pages, and
2 a stop-the-world phase, visiting all pages that were re-dirt-
ied during the concurrent phase. Relative to CHERIvoke,
this split significantly reduces the wall-clock overheads [23,
fig. 6] and pause times [23, fig. 10] involved. SPEC CPU2006
benchmarks with large heaps notably showed 70-90% reduc-
tion in pause times.

2.3 Analogous Barriers in Garbage Collection
Reloaded directly builds on insights and techniques from
garbage collectors, which have the same primary challenge
– to efficiently find, test, and possibly act upon every pointer
available to a program – and face the same pressures – to
minimize resource requirements and disruption to mutator
progress. Let us quickly summarize.

Early garbage collectors [16, 36] employed stop-the-world
approaches. Awkwardly long pause times soon resulted in
“real-time” or “incremental” collectors [32], interleaving col-
lectionwith the application and bounding latencies for alloca-
tions. Multiprocessor systems drove a need for “concurrent”
collectors, running alongside the mutator [8, 14]. In these
systems, mutator loads, stores, and/or uses of references are
subject to barriers to preserve collector invariants. Decades
of research into collectors have yielded a plethora of barrier
designs [8, 14, 15, 18, 19, 24, 28, 29, 31, 40, 41, 59].
The capability-dirty page tracking common to both Cor-

nucopia and Reloaded (§2.2.4) can be thought of as a store
barrier, like that of Boehm, Demers, and Shenker [14], but
provided by the ISA’s capability store instructions and mem-
ory management unit. Cornucopia uses this barrier to distin-
guish between clean, dirty, and re-dirtied pages, in further
analogy to “card-marking” collectors [56].

Reloaded additionally uses a page-based load barrier, like
that of Appel, Ellis, and Li [8], but integrated into the capa-
bility load instructions, as with Azul’s Vega architecture [19].
Load barriers allow collectors to have a simple, powerful
invariant: the object graph perceived by the mutator outside
of barrier code is as if collection has already completed.14
Since stale references cannot be loaded (nor propagated) by
the program, collection has guaranteed progress. Reloaded
will build on this invariant to guarantee that any pointer
loaded by the application is to an allocation live as of the

14Load barriers may also be self-healing if they correct memory as it is
loaded, committing the mutator’s view. Reloaded’s load barrier fault handler
(§3.2) takes this approach; it cleans memory and re-runs the load instruction.

254



Cornucopia Reloaded ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

start of the last epoch (§3.2). Further, its use of load barriers
will simplify its use of store barriers (§4.2).

3 Designing a New Revoker
3.1 Motivation: Pause Times and Excess Work
Relative to CHERIvoke, Cornucopia’s reduction in wall-clock
time overheads comes at the expense of increasing the total
amount of work done per revocation pass. On the dual-core
FPGA CHERI-MIPS system under study, the original pub-
lication shows that Cornucopia adds, roughly, 1 a 10% in-
crease in total cycle cost across most of SPEC CPU2006 [23,
fig. 10] and 2 a 10-15% DRAM traffic cost for memory-inten-
sive workloads (exemplified by omnetpp and xalancbmk) [23,
fig. 7]. In our re-implementation of Cornucopia for Morello
(§4.5), we observe 4% cycle and 9% memory bus traffic ge-
omean overheads, with a 33% traffic overhead for omnetpp;
these overheads are not merely artifacts of the CHERI-MIPS
implementation (see figs. 2 and 4).
Moreover, Cornucopia’s stop-the-world pauses were, in

memory-intensive workloads, still hundreds of millions of
CPU cycles, entire seconds on its test-bed, unlikely accept-
able outside of batch processing. On the more sophisticated
Morello system, our re-implementation exhibitsmedian pause
times as high as 30 milliseconds for these workloads (see
fig. 9). Iterating the Cornucopia strategy, by using a second
concurrent pass through memory, attempting to leave fewer
pages in need of cleaning with the world paused, showed
very little reduction in pause times [23, fig. 15] and, by defi-
nition, would anyway increase total work and DRAM traffic.
All told, Cornucopia demonstrated that concurrent revo-

cation is an attractive idea, but its implementation strategy
is otherwise likely a dead end. At the time, we conjectured
that another approach, centered around intercepting capabil-
ity loads (and inspired by the Pauseless GC algorithm [19]),
might hold promise [23, §X.C]. The present work quantita-
tively affirms that intuition via implementation.

3.2 Load Barriers for CHERI Revocation
Cornucopia fundamentally operates by tracking capability
store operations within a process (recall §2.2.5). Since the ap-
plication may, at any time, load any capability in its address
space, the revoker must treat any capability store as contam-
inating its targeted page, necessitating a repeated scan once
the world is stopped, even though most applications rarely
load, much less copy, dead pointers.15
If we could, instead, begin intercepting all of an appli-

cation’s capability load operations, we could provide the
illusion that revocation had already taken place. That is, ev-
ery pointer the application loaded could be processed for
revocation before the load was allowed. The revoker could,
then, entirely in the background, work to catch reality up to
15This is not the sole source of inefficiencies, as it is not the sole approxima-
tion made, but it is surely the most significant.

this perception, inspecting and erasing revoked capabilities
through the entire memory space. Pages stored to during
this background work would not need to be swept again:
any capability stored must have been verified by the re-
voker already and so its pointed-to memory must not have
been slated for revocation as of the start of this revocation
epoch.16 The application would block awaiting revocation
only if another batched revocation became necessary while
this background task had not yet finished.

There is a little subtlety to the above story: an application
thread may have a to-be-revoked capability in its register
file when revocation begins. If we allowed this capability to
remain, it would break the invariant that all later capabil-
ity stores are of capabilities already checked for revocation.
Therefore, entry into revocation must still synchronize all
application threads and scan their register files (and other
non-user-memory hoards of capabilities; see §4.4).17 At the
same time, we must synchronize CPU cores (at least those
running application threads) to begin intercepting capability
loads. In practice, we implement these two synchronizations
as part of a stop-the-world phase at the start of revocation;
see §4.3. However, as we will see (§5.4), these are orders of
magnitude shorter than Cornucopia’s stop-the-world phase.

Reloaded thus has a concise central invariant: any pointer
held in a user thread’s register file did not point into quar-
antine as of the beginning of the last revocation. Even in
the face of concurrent application execution, its measure of
inductive progress is similarly simple: pages not yet scanned.
By contrast, Cornucopia’s invariant must be phrased in terms
of pages marked capability dirty, and its progress happens
only by stopping the world (recall §2.3).

4 Implementation
We now discuss the central aspects of implementing sweep-
ing revocation, and in particular Cornucopia Reloaded, on
Morello. Readers curious for more detail are encouraged to
read the relevant chapter of Gutstein’s thesis [26, §5]. Our
implementations for Morello and CHERI-RISC-V have been
merged for the public 23.11 release of CheriBSD (§10).

16Within a given epoch, the application might yet hold, copy, and deref-
erence pointers to memory that has been freed within that epoch. In the
C/C++ memory models, the value and use of a pointer to freed memory are
undefined; the guarantee of CHERIvoke and Cornucopia is only that, after
a revocation epoch, pointers to memory freed prior to that epoch have been
removed. Reloaded draws the same distinction, and only frees from prior
epochs are guaranteed to be seen as already revoked during revocation.
17Analogously, garbage collectors must also be aware of references into the
collected heap but held outside the heap. Often, this means synchronizing to
gain access to thread registers (or synchronizing to ensure that threads are
at “safe points” where their registers are spilled to memory) and specially
handling thread stacks, references held by foreign code, etc.

255



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Filardo et al.

4.1 Per-PTE Capability Load Generations
One way to implement the design of §3.2 would be to extend
each page table entry (PTE) with a flag that blocks all capa-
bility loads. A revocation epoch would begin with clearing
this flag on all pages (issuing TLB shootdowns) and would
end when all pages have been visited by the revoker and
their capability load flags restored. This would unfortunately
require updating PTEs twice during each epoch.
To remove the initial PTE update, Morello (and CHERI-

RISC-V) added, for our use, a new behavior for PTEs: rather
than a permission flag, each PTE can be configured to com-
pare one of its bits to a bit in an in-core control register,
called the “capability load generation”. If these bits do not
match, any (valid, tag-asserted) capability loaded from this
page will trap.18 In the steady state, the generation bit in the
cores and in all PTEs for the address space match. When re-
vocation begins, only the in-core generation bits are toggled,
triggering all subsequent capability loads to trap. Thus, PTEs
need be updated only once per epoch.19

4.2 Lightweight Per-PTE Capability Dirty Tracking
Modern architectures, including ARM v8 and RISC-V, enable
accelerated dirty-tracking for PTEs using an additional “dirty”
bit. When moving Cornucopia from CHERI-MIPS to Morello
and CHERI-RISC-V, we mirror this optimization for capabil-
ity stores to enable hardware to track writes that (re)dirty
pages during our revocation sweep, and thus must be in-
cluded in the stop-the-world phase. There is, however, some
subtlety here (see §7.4) and our implementation is known to
have some slight defects that do not impact the evaluation
reported later.20

4.3 From Architecture to Software
Like Cornucopia, Reloaded’s revocation work is divided into
two phases, albeit with quite different behaviors (cf. §2.2.5).

First, with the system in the steady state of all generation
bits agreeing, a stop-the-world phase synchronizes all cores
in an address space. These cores increment their capability
load generation bits (and any cores later entering this address
space will adopt the incremented value), and the thread reg-
ister files and kernel capability hoards (see §4.4) associated

18It is not strictly necessary to condition the trap on the loaded tag value;
one could, instead, trap whenever a capability-width datum were loaded. It
is not, however, sufficient to merely clear tags, as specified for PTE bits in
previous versions of CHERI which were intended prevent cross-address-
space capability leakage discussed in footnote 13.
19Pages known to not be carrying capabilities (“capability clean”) can nev-
ertheless have their generation bits kept up to date, as this simplifies the
rest of the system. Yet, we would prefer not to; see §§7.4 and 7.6.
20In more detail, the implementation studied herein does not always cor-
rectly handle aliased pages, including copy-on-write aliases arising from
fork. The benchmarks studied herein fortunately do not create the prob-
lematic cases, as any aliased memory is not also quarantined. In parallel
with publication, our work has been merged to CheriBSD (see §10) and
these bugs have either been corrected or acknowledged for correction.

with this address space are scanned for revoked capabilities.
PTEs are not modified. Reloaded’s invariant that no to-be-
revoked capability can be held in a register or loaded from
memory is reestablished for the new epoch (see §3.2).
The second phase consists of two simultaneous kinds of

work. In the foreground, as the application takes capability
load faults, the revoker responds by using the application
thread to clean the targeted page and update the PTE. In the
background, a revoker thread visits all as-yet unvisited pages
and updates the PTE. Some light synchronization is required
here, around updates to PTEs, but page visits in the same
epoch are idempotent, so PTE reads are less aggressively
interlocked. The background work ensures that revocation
terminates and restores the steady state of all load generation
bits agreeing. Throughout, Reloaded’s invariant holds.
Page scans, both foreground and background, employ

heuristics to avoid converting read-only pages to read-write.
If the revoker can acquire a page exclusively and that page is
already writable by userspace, revocation may directly mu-
tate its contents. Otherwise, either the page is not writeable
or only shared access could be acquired, and the page will
be handled as read-only. If a capability on such a page must
be revoked, the full page fault machinery will be invoked to
upgrade the page to writeable, but if no writes are necessary,
the page is put back into service as-is.
A thread taking a load fault will lock that threads’s pro-

cess’s page table (“pmap”) twice. At first, the threadwill detect
if the local core’s TLB is out-of-date with the PTE, which
may have already been updated due to completed revoca-
tion on another core. But if revocation is indeed required,
it proceeds without locks held (because probing the revo-
cation bitmap may trigger further page faults) but with the
target page sufficiently quiesced that it cannot, for example,
be swapped out or, for a read-write scan, be downgraded to
copy-on-write. After revocation, the pmap is again locked
and the scanned page’s entry is idempotently updated to the
current load barrier generation. Multiple threads may trigger
overlapping revocation visits to the same page: any number
of threads may take faults attempting to read the same page,
and the background thread may also be reading that page.
However, at most one such thread is licensed to write to the
page. If a read-only scan overtakes the read-write scan and
must write, it will serialize behind the read-write scan when
upgrading the page and will not scan again.

For expedience, bulk address space operations, especially
cloning for fork, are excluded during bulk revocation sweeps
(as was also true of Cornucopia).21 Certain operations, such
as unmaps or mapping of regions of zeroed pages, which do
not complicate revocation, could be permitted.
21Our concurrent implementations use one system call per revocation phase,
invoked by a dedicated thread in userspace. This system call holds the virtual
address map “busy” throughout concurrent revocation phases. Yet fork can
occur between two phases of the same revocation epoch; this is subtle for
Reloaded, as the child process must continue to take appropriate load traps.

256



Cornucopia Reloaded ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

4.4 Thread Synchronization and Kernel Hoards
One of the largest engineering challenges in fitting CHERI-
voke and its successors into CheriBSD has been the free
flow of user-space pointers into the kernel. These flows may
be ephemeral (lasting only for a single system call, such as
write) or the kernel may hoard the pointer(s), returning
them to user-space at a later time; hoarding is popular with
asynchronous facilities such as kqueue and aio. When a
thread is context switched off core, pointers in its register
file are similarly hoarded. At some point during a revocation
epoch, the kernel must scan all the pointers it holds on be-
half of a user program, and at no point may it divulge one
unchecked by the revoker. For Reloaded, this scan happens in
the first, stop-the-world phase, leaving pointer copy-out un-
altered. At present, this scan uses an inelegant and invasive
approach, stopping all threads associated with the applica-
tion, completing or aborting all in-progress system calls, and
interacting with each hoarding subsystem (including saved
register files) with bespoke logic. Better approaches seem
possible (see §7.8), but we have not found the engineering
time required.

4.5 Reimplementing Cornucopia
For this work, we have largely rewritten the public proto-
type of Cornucopia’s implementation in CheriBSD. Beyond
adding the “machine dependent” layer for Morello, we had
to contend with the original implementation’s somewhat
superficial integration with the virtual memory subsystem.
Reloaded demands a deeper integration, as it must interpose
on every attempt to expose a page to userspace as well as
the load generation mismatch faults. As we did not wish
to have two completely different revocation codepaths in
our implementation, our changes necessarily impacted the
Cornucopia functionality as well. Of note, our reimplemen-
tation will not skip a mapped page in subsequent epochs
when it becomes “capability clean.” While this matters in
principle, pages becoming clean is not observed to happen
in the benchmarks studied here, even when running with
our Reloaded implementation, which does attempt to detect
such pages. What we call “Cornucopia” below should be
understood to be our (imperfect) re-implementation of the
algorithm, not the same software as the original paper.

5 Evaluation
Revocation in the style of CHERIvoke has four key overheads:
wall-clock time, CPU time, bus accesses, and memory occu-
pancy.22 We evaluate each of 1 Reloaded; 2 our re-imple-
mentation of Cornucopia; 3 “CHERIvoke”, our Cornucopia
eschewing its concurrent phase; and 4 “Paint+sync”, our
in-userspace machinery of quarantine bitmap management

22Wall-clock is measured directly. Peak memory occupancy is measured by
the rusage framework. Per-core CPU time and bus accesses (a proxy for
DRAM accesses) are reported by system-mode pmcstat.

but without revocation passes. (“Paint+sync” does not provide
temporal safety, but it is useful in characterizing overheads.)
We use a subset of the SPEC CPU2006 suite to represent CPU-
bound batch processing (§5.1). As stand-ins representing
latency-sensitive workloads, we use PostgreSQL’s pgbench
(§5.2) and gRPC’s QPS (§5.3). The pgbench workload is a se-
quence of many transactions and allows measuring latencies
of many small units of work performed against a temporally-
safe server. The gRPC QPS benchmark is similar, though
does its own aggregation of latencies.

We use LD_PRELOAD-ed shims to replace the system heap
allocator with snmalloc [33] and to select the temporal
safety strategy with a modified mrs [25]. We configure mrs to
use Cornucopia’s revocation policy: allocation requests made
when quarantine exceeds 1/4th of the total heap (or, equiv-
alently, 1/3rd of the allocated heap) will trigger revocation,
unless less than 8 MiB is in quarantine. For each benchmark,
all runs, of both baseline and test conditions, use the same
CHERI C/C++ “pure capability” spatially-safe CheriBSD bi-
nary; the baseline loads the same snmalloc LD_PRELOAD
shim as the test condition but without mrs.

Throughout, our CheriBSD kernel is not a “pure capability”
program, but rather “hybrid” (recall footnote 1). This has no
effect on the interface to the kernel and user programs’ use
thereof, including revocation. We believe the use of a hybrid
kernel binary, while generally discouraged, minimizes the
impact of some of Morello’s microarchitectural quirks [51]
on revocation sweep loops; the overheads reported here are
both attainable on currentMorello boards and likely to reflect
overheads seen on a hypothetical successor.

5.1 SPEC CPU2006 INT
Eight of the SPEC CPU2006 [27] integer-math benchmarks
compile as pure-capability CHERI C/C++ programs and have
been used by past CHERI temporal safety work. These are
single-threaded, throughput-oriented applications: metrics
of interest are aggregate resource consumption, such as time
elapsed or memory occupancy, and not per-event latencies.

Methodology. We consider these programs in their ref
configurations, and measure a total of twelve executions
each across each of our temporal safety strategies.

To mitigate sampling effects, we run four batches of each
benchmark, with each batch consisting of a cold boot of a
Morello and four executions of the benchmark. This gives
us some sampling across any per-boot randomization, and
we discard the first run in each batch to suppress system-
wide startup transients. To further reduce noise, we partition
Morello’s four cores. Application threads are always pinned
to core 3 and any offloaded revocation thread is pinned to
core 2. The remainder of the system runs on cores 0 and 1.

Results. Figure 1 shows that Reloaded performs very sim-
ilarly to Cornucopia on these SPEC workloads, with mod-
est gains on the highest-overhead cases of omnetpp and

257



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Filardo et al.

Figure 1. Contrasting wall-clock overheads of Reloaded, Cornucopia, and CHERIvoke against those reported by other published
techniques [20, 34, 48, 50, 60]. The Cornucopia and CHERIvoke results reported here are using our re-implementation of the
revoker running on Morello and use the CHERI spatially-safe program as the baseline, and so differ from those reported for the
earlier implementation on CHERI-MIPS [23, fig. 6]. For programs with multiple workloads (astar, bzip2, gobmk, and hmmer),
the values shown for CHERI temporal safety schemes are geomeans. The numbers reported for BOGO [60] also factor out
their reported cost of spatial safety; other numbers are as reported in their publications. The bzip2 and sjeng benchmarks do
not engage revocation and so are excluded from subsequent study.

Figure 2.Total CPU-time overheads (both cores) of Reloaded,
Cornucopia, CHERIvoke, and asynchronous quarantine man-
agement.

Figure 3. Ratio of averaged peak memory footprint (RSS)
between test condition and baseline for a representative sub-
set of benchmarks, sorted descending by the peak RSS of
the no-revocation baseline (given above each, in Mibibytes).
The general policy target of 33% of the heap in quarantine
is shown as a dashed line, but gobmk and hmmer use so little
memory that their revocation behavior is significantly im-
pacted by mrs’s default minimum quarantine of 8 MiB.

Figure 4. Bus traffic overheads of Reloaded, Cornucopia, and
CHERIvoke on Morello. For each benchmark, we also show,
above the plot, the mean number of transactions executed
by the no-revocation baseline (in billions) and the mean
Reloaded traffic as a percentage of Cornucopia mean traffic.

xalancbmk. In detail, ourworst cases are xalancbmk, at 29.4%
overhead (down from 29.7% for Cornucopia) and omnetpp,
at 23.1% (down from 24.8%).23 All CHERIvoke-based algo-
rithms tested here appear competitive with other published
techniques on these workloads.
Figure 2 confirms that Reloaded does not consume more

CPU time than Cornucopia, and in some cases, it is modestly
cheaper. Tangentially, we speculate that significant differ-
ences between “Paint+sync” and “CHERIvoke” are not the
result of quarantine per se but largely because snmalloc

23For perspective, such wall-clock differences, while rare, are not out of
the question between different real-world implementations of malloc. For
example, the SPEC CPU2017 623_xalancbmk_s benchmark with the glibc
allocator ran at approximately half the speed relative to running with
snmalloc, and the same suite’s 620_omnetpp_s benchmark showed a 20%
slowdown in the same settings [33, fig. 12].

258



Cornucopia Reloaded ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Figure 5. Normalized time overheads for pgbench.

Figure 6. Normalized bus access overheads for pgbench.

behaves differently once quarantine release happens on a
second thread.
Figure 3 shows that Reloaded has nearly identical im-

pacts on peak memory usage as Cornucopia. For bench-
marks that allocate large heaps and significantly deviate from
the expected target of 33% heap in quarantine (libquantum,
omnetpp, and xalancbmk), we see that much of the over-
shoot arises from quarantine, not revocation itself, and that
CHERIvoke hews closer to the target. We conclude that these
applications free significant amounts of memory while quar-
antine is still being revoked or otherwise processed.
Figure 4 shows that Reloaded, by not having to rescan

pages, induces less bus traffic than Cornucopia. The two
benchmarks with the highest revocation DRAM overheads
both show approximately 11% reduction with Reloaded rel-
ative to Cornucopia: omnetpp now takes 45% vs. 50%, and
xalancbmk now takes 60% vs. 68%. The median bus traf-
fic cost of Reloaded relative to Cornucopia is 87% in these
benchmarks. While bus traffic reduction was not our primary
objective, it is nevertheless a welcome improvement, even
if Reloaded’s savings here are not reflected in CPU or wall
time improvement.

5.2 PostgreSQL pgbench

Here, we seek to assess the impact of these temporal safety
technologies on a proxy for interactive workloads.

Methodology. We run a pure-capability PostgreSQL [2,
3] server on Morello with our LD_PRELOAD-ed shim(s) and
run the default workload generator of pgbench [4], without
shims, against this server. We use a “scale factor” of 10 and
run for 170,000 transactions (which takes about 10 minutes

Figure 7.Normalized cumulative distribution function (CDF)
of per-transaction execution time of pgbench, showing the
fraction of transactions completing in less than the given
time, accumulated from four runs of each scenario. 90th and
99th percentiles are marked with dotted grid lines. For com-
parison, we have approximated (using separate runs, subject
to modest probe effect) the median per-epoch world-stopped
durations for CHERIvoke and Cornucopia, shown as dashed
segments, and the median per-epoch cumulative time taken
to sweep pages by the application thread for Reloaded, shown
as the dotted segment. These are shown with their left ends
at the corresponding 90th percentiles.

without any temporal safety shim loaded).24 We use the same
quarantine policy and core pinning regime as with the SPEC
results above; here, the benchmarked application threads
(that is, the PostgreSQL server processes) are pinned to core
3, and any revocation threads are pinned to core 2, while
the pgbench client and the rest of the system are on cores 0
and 1. In order to suppress system-wide start-up transients,
we initialize the database and perform a 30-second run of
pgbench before restarting the server for measurements. As
invoked here, pgbench performs transactions serially, rather
than on an a priori schedule (but see §5.2.1). As such, its
results are subject to “coordinated omission” [49], where
latency spikes are seen by only a single transaction and do
not impact subsequent transactions’ reported latencies.

Results. Figure 5 shows that Reloaded offers lower wall-
clock and total CPU time overheads than Cornucopia. The
overheads imposed on the server thread are nearly identical.

Figure 6 shows that Reloaded incurs less than half the bus
traffic overhead of Cornucopia, while only slightly increasing
traffic on the application core. This suggests that Cornucopia
revisits approximately all pages with the world stopped.

24Usually, when benchmarking databases, one would report transactions
completedwithin a fixed period of time. Using a fixed number of transactions
makes the workloads more directly comparable to our SPEC CPU results.

259



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Filardo et al.

Figure 7 captures three significant points: 1 All three revo-
cation implementations studied here exhibit similar latency
85th percentiles, and all are only slightly slower than just
quarantining memory. 2 The strategies begin to differenti-
ate around the 90th percentile, and exhibit stark distinction
thereafter. The fully sequential CHERIvoke has its 99th per-
centile 27 milliseconds slower than the median transaction;
Cornucopia’s two-pass design lowers its to just under 10,
and Reloaded further reduces its to 5.4. The dashed segments
of fig. 7 show the median world-stopped times, of 20 millisec-
onds for CHERIvoke and 6.2 for Cornucopia, respectively,
appearing to account for most of the spread between 90th
and 99th percentiles. The median sum of trap handling time
for Reloaded, of 860 microseconds and shown as the dotted
segment, less obviously corresponds with a change in its
cumulative distribution function (CDF). 3 Reloaded shows
only modest latency increase over its prerequisite overheads
(“Paint+sync”) until around the 98th percentile.

The pgbench server peak RSS was dominated by “autovac-
uum” background workers, not the worker processing our
pgbench transactions. However, the worker heaps are fairly
small, with a mean of 22 MiB allocated (for Reloaded; 21 for
Cornucopia, 19 for CHERIvoke); the resulting small mean
quarantine sizes (5.6 MiB for Reloaded, 5.3 for Cornucopia,
and 4.8 for CHERIvoke) are under 4% of the worker’s RSS.

Discussion. This workload is not (steadily) CPU bound;
without sweeping revocation, we measure the server thread
on core for only a median 290 of the median 598 wall-clock
seconds elapsed. Two notable consequences follow: 1 CPU
overheads, even restricting to the PostgreSQL server thread,
can be significantly larger than elapsed runtime overheads,
as the server process can “expand” into this already-present
inter-transaction idle time. 2 Stop-the-world phases, in par-
ticular, can be “hidden” in these idle intervals. This helps to
explainwhy, althoughCHERIvoke has a pronounced “corner”
in fig. 7, comparable to its median pause time (purple, upper
dashes), Cornucopia sees no corner directly comparable to
its median pause time (lower, red dashes).
Last, as said, the Reloaded strategy tracks quite closely

to its prerequisite overheads. This suggests that, at least
for interactive workloads, changes to quarantine representa-
tion and management may have a more significant effect on
transaction latency than refinements to fault handling.

This workload differs significantly from those of §5.1 in its
revocation rate: approximately once every 17 transactions,
or over 14 times per second, with Reloaded. We defer further
contrastive analysis to §5.5.

5.2.1 Latency vs. Throughput. We can also run pgbench
such that it imposes an a priori schedule on its transactions
(its --rate option). For some schedules, we reran the bench-
mark with Reloaded and otherwise as above. Per-transaction
latencies, ignoring schedule lag, in millisecons, are as shown

Latency Percentile: 50 90 95 99 99.9

Tx
/s
ec

100 3.15 5.14 6.28 12.8 32.4
150 3.12 5.12 6.35 12.5 43.9
250 3.06 4.13 5.49 8.72 68.6

unscheduled 3.15 4.22 5.59 8.55 69.6

Table 1. Latency percentiles, in milliseconds, for various
fixed rate schedules of pgbench.

Figure 8. Boxplot of latency percentiles for gRPC’s QPS
benchmark, using the scenario of §5.3, normalized by their
respective percentile’s no-revocation mean latency (given,
in milliseconds, above the chart). Means of each distribution
are shown above.

in table 1. As expected, the long tail 99.9th percentile de-
creases with lower throughput. However, this comes with
unexpected increases in short tail latencies (90th - 99th per-
centiles). This effect is also seen without revocation; further
investigation is necessary.

5.3 gRPC QPS
Methodology. To further explore the impact of revocation

on latency-sensitive workloads, we run a gRPC 1.48.1 QPS [1]
client-server workload. As with pgbench, we shim the server
process with revocation and leave the client unmodified.
To focus on the effects of revocation, we use a custom

gRPC “scenario”: transport security is disabled, each of the
client and server is a single process with two threads, both
client and server are asynchronous and apply throughput-
focused tuning to a minimal stack, each client thread opens
10 gRPC “channels”, and each channel is permitted to have 4
outstanding messages. The client will send messages to the
server and await responses, while measuring throughput and
latency percentiles, for 30 seconds, after a 5 second warmup.

BecauseQPSworkers aremulti-threaded, we pin the server
process to CPU cores 2 and 3, but do not attempt to pin the
background revocation thread; that is, revocation more di-
rectly competes with foreground work in this workload. The
client, and the rest of the system, is restricted to cores 0
and 1. To mitigate sampling effects, we collect data for each
revocation strategy from three batches of four runs, with
each batch run after a cold boot and beginning with an ad-
ditional, discarded, run. Unlike the earlier experiments, all
data collection took place on the same Morello machine.

260



Cornucopia Reloaded ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Figure 9. A representative subset of benchmarks’ revocation phase times. For each benchmark, we show (left to right) a boxplot
summarizing the distribution, across all runs and all revocations, of time taken by CHERIvoke’s single (world-stopped) phase
(in blue), the concurrent (orange) and world-stopped (green) phases of Cornucopia, the world-stopped (red) and concurrent
(violet) phases of Reloaded, and all Reloaded faults in the application thread during the concurrent phase (cumulative per
revocation, brown). The black dots show extremal values. gRPC QPS triggers a bug in CHERIvoke, so that bar is absent.

Results. Reloaded induces a 12.82% ± 0.16% reduction in
QPS throughput, not statistically significantly different from
Cornucopia’s 12.88% ± 0.16%.25 Figure 8 shows the selec-
tion of latency statistics that the benchmark accumulates.
Similarly to fig. 7, we see that either temporal safety strat-
egy introduces modest increases to observed 50%, 90%, and
95% latency percentiles (resp.). At 99%, Reloaded doubles
(2.0 ± 0.3) latency relative to the baseline (adding an addi-
tional 15 milliseconds, mean), which compares favorably to
Cornucopia’s more than tripling (3.5 ± 0.9; or adding 37 mil-
liseconds, mean). At 99.9%, both revocation strategies impose
long tail latencies of nearly ten times those of the baseline
(9.6 ± 0.1 for Reloaded and 9.9 ± 0.4 for Cornucopia).

Using separate runs of the benchmark with more detailed
probing, we can estimate Cornucopia’s mean stop-the-world
time to be 8.7 ± .8 milliseconds, and Reloaded’s 0.3 ± 0.1.
Reloaded’s cumulative fault handling time shows high vari-
ance across revocations, at 6 ± 3 milliseconds, with a mea-
sured range from 0.3 to 39. Revocation’s concurrent phases
take 86±6milliseconds for Reloaded or 81±8 for Cornucopia.

25Because of an undiagnosed bug in our implementation apparently involv-
ing signal handling, we are unable to obtain CHERIvoke results for this
experiment. As the focus here is on the concurrent revocation schemes, we
have chosen to exclude it from dicussion rather than debug the issue.

Discussion. Reloaded and Cornucopia perform almost
identically up through the 95th percentile, adding very lit-
tle latency relative to the baseline. This suggests that, as
with pgbench, differences in this region are dominated by
the costs of quarantining memory; in particular Reloaded’s
faults do not add significant cost to every transaction. At
99%, we see impacts of revocation and a differentiation of
strategies’ impact. In particular, Reloaded’s mean impact is
less than Cornucopia’s measuredminimum. At 99.9%, we see
pathological behavior that was not observed with pgbench,
where this percentile showed essentially no difference from
baseline. Here, we see some transactions stalled across two
revocation epochs! We suspect that two factors are at play:
1 the “background” revoker threads are contending for CPU
time, and will, when revocation is active, use their entire
preemptive quantum (see §7.7), and 2 the mrs shim blocks
an allocation or free operation if its quarantine is over twice
full (but see §7.2; future policies may differ). Nevertheless,
Reloaded still performs marginally better than Cornucopia.

5.4 Revocation Phase Timing
Figure 9 visualizes the impact of revocation on interactive
workloads from another angle; we display the time spent in
different phases of each revocation strategy, including the
critical stop-the-world phase. To reduce sampling effects,
each benchmark here was run at least four times on at least
two physical Morello machines. These times are subject to

261



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Filardo et al.

a minor probe effect from the more detailed accounting nec-
essary to obtain them, relative to the overheads reported
earlier.
First, we can validate Cornucopia’s claim that its world-

stopped phases (third from the left) are on the order of a
tenth as long as its concurrent phase (recall [23, fig. 10]),
even given the dramatic differences between CHERI-MIPS
and Morello. We can also, again, see that Cornucopia and
Reloaded both do more aggregate work than CHERIvoke, but
that the vast majority of this work is done in the background.
Reloaded’s stop-the-world phase is almost always very

brief for single-threaded workloads, on the order of tens of
microseconds. In workloads with large amounts of memory
(astar, omnetpp, xalancbmk, pgbench), this can be three or
more orders of magnitude smaller than Cornucopia’s stop the
world phase. In many workloads, even the cumulative time
spent handling Reloaded’s on-demand faults is significantly
smaller than Cornucopia’s stop-the-world phase. In pgbench,
even if the entirety of this time is borne by one transaction’s
processing, Reloaded will still have less of an effect on that
transaction than one suspended by Cornucopia’s stop-the-
world phase. The exceptions are pointer-chase-heavy work-
loads (astar, omnetpp, xalancbmk); however, even these ap-
plications see that impact spread out across the concurrent
phase rather than all at once.
For the multi-threaded gRPC workload, we see that the

stop-the-world phase of Reloaded has a median of 323 mi-
croseconds. This increased time is likely inter-core synchro-
nization, as gRPC will have both cores busy. Still, this is over
an order of magnitude smaller than Cornucopia’s.

5.4.1 Outliers. There are a few outlier points in this graph.
One run of gobmk 13x13 may have seen one context switch
during a Reloaded STW phase, which took just over ten mil-
liseconds. Eight pgbench Reloaded STW phases took longer
than ten milliseconds and 92 Cornucopia STW phases took
longer than a second; we suspect this is some pathological
interaction between quiescing application thread(s) and sys-
tem calls in progress. One early epoch in all libquantum
Reloaded runs seems to consistently take around half a mil-
lisecond; this, too, may be a result of interaction with a
system-call in flight. FreeBSD’s thread_single() mecha-
nism used to quiesce application threads is primarily used
in rare, expensive operations (fork, exec, exit, debug trac-
ing, etc.), and approaches more tuned for revocation seem
plausible, at the cost of some engineering effort (see §7.8).

5.5 Revocation Rates
A significant difference between the workloads we have
studied is the rate at which they perform revocation. Ta-
ble 2 collects relevant statistics for Reloaded under a rep-
resentative set of benchmarks. We see that the most RSS-
heavy SPEC workloads, namely xalancbmk, astar lakes,
and omnetpp, cycle gigabytes of address space through the

Mean Alloc Sum Freed
Benchmark (MiB) (GiB) F:A Revocations Rev. / sec.

xalancbmk 625 66.9 110 426 0.572
astar lakes 235 3.36 14.7 39 0.150

omnetpp 365 73.8 207 827 0.880
hmmer nph3 49.3 2.06 42.8 168 1.45
hmmer retro 20.4 0.579 29.0 117 0.481

gobmk trevord 124 0.212 1.75 7 0.0623
pgbench 23.0 55.1 2534 10072 14.8

gRPC QPS 340 4.65 14.0 54 1.54
Table 2. Reloaded revocation rate statistics for a representa-
tive subset of benchmarks, using the same detailed reporting
runs as in §5.4: the mean allocated heap size (sampled at each
revocation), the mean sum of all quarantined bytes per run
(accumulated at each revocation), the ratio of the above two
numbers, the mean count of revocations performed (per run),
and mean revocations per run wall-clock time. All gRPC re-
vocations are assumed to happen during the 35 wall-clock
seconds of useful work done by the worker process.

allocator while having mean heap allocation footprints of
hundreds ofmegabytes. These programs perform, on average,
less than one revocation per second. By contrast, the Post-
greSQL server process attending to pgbench cycles nearly as
much address space as xalancbmkwhile having a mean heap
of around 4% the size. This workload performs an average
of nearly fifteen revocations per second! This helps explain
the discrepancy between fig. 4, where 60% bus overhead was
the worst case, and fig. 6, where 96% was the best case.

5.6 The More Subtle Costs of Concurrency
Across SPEC, in fig. 4, we see that Reloaded’s concurrent be-
havior can require moderately more (omnetpp, xalancbmk)
to slightly less (gobmk, hmmer) memory traffic than the fully-
sequential CHERIvoke (though it always uses less than Cor-
nucopia; recall §5.1). For PostgreSQL, in fig. 6, Reloaded has
dramatically lower overheads. CHERIvoke’s sequential scan
effectively flushes the cache, whereas Reloaded’s load faults
often warm the cache with useful application data, leaving
a second core with an independent cache to scan in the
background. Conversely, traffic may increase for pointer-
chase-heavy workloads, such as Omnetpp and xalancbmk,
may have sparse page utilization such that the revoker’s
page scans may contend with useful application data.
More generally, this suggests future avenues of explo-

ration, including non-temporal loads for the page scan and/or
bitmap probes, or “run-ahead” during revocation page faults
to reduce the total number of faults. If hardware offload en-
gines should be designed to perform the revocation sweep,
cache contention with the application cores should be a pri-
mary design consideration.

262



Cornucopia Reloaded ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

6 Related Work
6.1 Memory Coloring
Somemainstream architectures have added pointer andmem-
ory “coloring” in an effort to address memory safety woes
and accelerate instrumentation-based technologies like Ad-
dress Sanitizer [46]. Prominent examples include SPARC’s
SSM or ADI [38] and, more recently, Arm’s Memory Tag-
ging Extension (MTE) [9, §D10]. These technologies color
both memory and pointers by adding a few bits of metadata
to small granules of physical memory and carving out an
equal number of bits from pointer addresses. When derefer-
encing a pointer, the colors of the pointer and memory can
be checked to match. With strict enforcement, this can be
leveraged to provide deterministic defense against overflow
into adjacent objects, and can additionally provide stochastic
defense against UAF, UAR, and double-free, by recoloring
memory per use.

Such machinery generally comes with two caveats:

1. Memory colors must be kept secret from adversaries
capable of forging pointers (akin to ASLR’s entropy).

2. Strict trapping of violating stores requires a read-modify-
write of memory, so coloring architectures optionally
track stores “imprecisely,” merely flagging violations
for later analysis.

Microsoft Security Response Center [13] and Google [47]
have published reports analyzing the security offerings of
these schemes. Broadly speaking, performance concerns
mean production software will use imprecise tracking for
at-scale auditing, with precise tracking used during devel-
opment or to collect crashes after detection in production.
This strategy relies on surveillance (and reactive patching)
to deter vulnerability exploitation. By contrast, Cornucopia
Reloaded, like CHERI and all CHERIvoke descendants, aims
to be a deterministic, proactive, fail-stop defense. Neverthe-
less, combining the two holds exciting promise; see §7.3.

6.2 Unmapped Memory
While snmalloc and the embedded allocators in the CheriBSD
C runtime never relinquish address space via munmap(),
some mmap() consumers do (e.g, a program that repeatedly
maps files in order to copy them). This introduces oppor-
tunities for both intra- and inter-allocator UAF and UAR.
We have implemented (but do not evaluate in this paper) a
solution to this problem in two parts:

1. Capabilities returned by mmap() are backed by a reser-
vation [11]. When part of the reservation is unmapped
via munmap(), the addresses are backed by guard map-
pings until the entire reservation is unmapped. This

ensures that holes in the reservation can not be filled
by subsequent mmap()s and create UAF issues.26

2. When reservations are completely unmapped, they are
placed in quarantine. We have extended Cornucopia
and Reloaded’s sweep infrastructure to search for and
revoke capabilities referencing quarantined mappings.
Only after a revocation pass do we free the unmapped
reservation.

Together, these changes eliminate gaps in CHERIvoke and
Cornucopia’s UAF and UAR protections.

6.3 CHERIoT Temporal Safety
The CHERIoT embedded platform [6, 7] features heap tem-
poral safety via an adaptation of Reloaded to a MMU-less
system.27 It, too, batches revocations, bitmaps quarantine,
and operates by interposing on capability loads. CHERIoT,
however, leverages the small size of the systems it targets
to eliminate the distinction between UAF and UAR; freed
objects become inaccessible immediately. As a result, details
of revocation batching and epochs are much less visible to
the client.
The perceived immediacy of revocation is accomplished

by having the CHERIoT Capability Load instruction directly
probe the revocation bitmap to filter capabilities: a capability
to a revoked object has its tag cleared on its way into the reg-
ister file,28 without traps or software intervention. To make
this tolerable, CHERIoT’s revocation bitmap is 1 defined by
the processor architecture; 2 microarchitecturally situated in
a “tightly coupled memory” next to the CPU core pipeline, ac-
cessible with low latency bounds; and 3 physically indexed,
as the architecture lacks virtual memory.

Closing the UAF/UAR gap allows the CHERIoT allocator to
use in-bandmetadata for its quarantine and free lists, without
additional defensive measures [39, 43], as freed words are not
accessible by clients. By contrast, Cornucopia and Reloaded
have to behave as though quarantined objects were still
allocated, using out-of-band lists to track quarantine.

Given the tight coupling, CHERIoT’s Ibex implementation
uses a small, cycle-stealing, pipelined hardware revocation
state machine rather than a software thread [7, §3.3.2]. This
engine can, in its steady state, test one capability for revo-
cation every cycle. At a modest 20 MHz, the demonstration
platform’s 512 KiB of RAM takes just over 3 milliseconds,
less than an idle time quantum, to sweep.

26Reservations also serve a spatial safety role, as they are padded as re-
quired by CHERI capability bounds compression [57]. This padding is ini-
tially backed by guard pages, as if it had been unmapped immediately, and
prevents mmap() from creating spatial aliases.
27Despite the chronology of publication, much of the design and implemen-
tation of Reloaded predates CHERIoT.
28This load barrier is not self-healing; recall footnote 14.

263



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Filardo et al.

7 Future Work
7.1 Concurrent Background Revocation
Cornucopia and Reloaded both use a single thread for all
their background revocation work. It should be relatively
straightforward to split this work between multiple threads,
enabling multiple cores to accelerate revocation. This would
allow revocation sweeps to complete faster and could be at-
tractive on systems with multiple temporally safe processes.
In fact, we imagine eliminating the current per-process back-
ground thread in favor of making the revocation system
call asynchronous, backed by a shared pool of background,
in-kernel worker threads.

7.2 Quarantine Policy Tuning
The single revocation policy in the mrs shims used herein
is not particularly tuned. First, it may be that the ratio of
quarantine to allocated heap chosen is not ideal, or not ideal
for some workloads. Second, more subtle considerations also
apply. For example, mrs’s internal list of quarantined objects
is double-buffered to permit free operations while revoca-
tion is in progress. If, however, an allocation request arrives
and this second quarantine buffer is also over policy, mrs
blocks and waits for revocation to finish. This, too, may not
be ideal behavior. Thirdly, mrs makes no effort to detect and
unmap entire pages that are quarantined. Such unmapped
pages could be discounted in quarantine, giving significant
reduction in the need to run the revoker [23, §VIII.A].

7.3 Composing CHERI and Memory Coloring
A non-orthogonal composition of CHERI and memory col-
oring (recall §6.1) could bring an order of magnitude im-
provement to revocation overheads, while also closing the
UAF-UAR gap, simplifying allocator data structures, justi-
fying a faster store behavior for memory colors, and expos-
ing enough information for a hardware revocation engine
(as with CHERIoT; recall §6.3). Concisely, this composition
would move in-pointer color bits under CHERI’s integrity
protection and would require authority to re-color memory.
When the heap allocator sets bounds on an object, it can also
fix the color of the capability returned; using its elevated
authority to the heap, the allocator can recolor memory as
part of free() and promptly prevent stale access. As the
color space is finite, revocation is still required, but only
when a given span of memory has exhausted all of its colors.
Quarantine, and the pressure to revoke, thus grows at a rate
inversely proportional to the number of colors available.
After an allocation is freed, capabilities to it are perma-

nently useless: either they have the wrong color or they
have been revoked. As such, clients will never be able to
read or write through such capabilities, and, in particular,
cannot read their own writes to see whether they happened
or not. Thus, we are justified in discarding stores through
mis-colored capabilities, rather than reporting traps, without

sacrificing security. Further, we may also revoke mis-colored
capabilities whenever they are found, even if their target
address space is not quarantined. This test is completely
architectural, making it well-suited for DMA accelerators.

7.4 Revised Capability-Dirty Tracking
The architectural machinery underpinning capability-dirty
tracking emerged from an experimental security feature in
CHERI-MIPS, meant to constrain the flow of capabilities in
the system on a per virtual page basis. While it works in
its new role, it is awkward: we are attempting to measure a
property of the data on a physical page through its (poten-
tially many) virtual aliases. Marking a page as needing the
revoker’s attention is straightforward: if any alias would per-
mit a capability store without trapping, the page must be vis-
ited during revocation. Unfortunately, detecting that a page
no longer holds capabilities is quite challenging, involving
multiple rounds of PTE updates and careful synchronization
of software metadata. We would prefer physically-indexed
control information. While most architectures have not, his-
torically, had such structures, the push towards confidential
computing has given rise to plausible candidates, such as
the Granule Protection Table in Arm’s RME [9, §D9] or the
Reverse Map Table in AMD’s SEV-SNP [5].

7.5 Relaxed Capability Tag Coherence
Reloaded’s use of load barriers, and the concomitant invari-
ant that applications can propagate only checked capabilities,
opens the door to tolerating one-sided error in capability-
dirty tracking. In stark contrast to Cornucopia, Reloaded
need not be informed of capability stores during revocation.
In fact, Reloaded can operate on a view of capability tags po-
tentially as stale as the start of the current revocation epoch,
so long as its updates to memory remain properly atomic and
sensitive to later stores. If we can efficiently achieve a global
view of tags at revocation’s start (say, by writing tags back
to memory), we may be able to significantly reduce cache
coherency traffic associated with probing for the presence
of capabilities in memory.

7.6 Revised PTE Capability Load Control
The per-PTE-based control of capability loads and gener-
ations given in §4.1 is less than ideal. Because faults are
triggered only in the case of generation bit mismatches,
capability-clean pages that are permissive of capability stores
are awkward: we must keep the generation bit up to date
even though no capabilities can (yet) be loaded from this
page. Failure to do so risks a load generation trap outside
of revocation or, worse, a capability escaping the attention
of the revoker. We are therefore faced with an unpleasant
decision: either always keep such pages’ generations up to
date on every revocation scan (unnecessarily taking the pmap
lock) or completely disallow capability stores to clean pages

264



Cornucopia Reloaded ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

(requiring at least that transition from clean broadcast the
update to all aliases).
To address this awkwardness, we propose adding a PTE

configuration in which capability loads always trap;29 such
pages must be considered by the revoker, but their contents
may be skipped while the physical page remains clean and
their generation bits do not need to be updated. Traps trig-
gered by this PTE disposition can be quickly resolved by
replacing the PTE with one that contains the current load
generation (to be maintained until the page is clean).

7.7 Revocation’s Time Quantum and Priority
The investigation of gRPC’s multi-threaded workload (§5.3)
highlights another source of tail latency: preemptive mul-
titasking with the “background” revoker thread. The other
workloads have had the luxury of a spare core onto which
to delegate this work, but for this case, the revoker more ob-
viously competed with the application for CPU time. At the
moment, the background revoker thread is merely another
pthread thread in the system; it is quite likely that tuning
(down) the preemptive quantum for this thread and/or low-
ering its priority would improve tail latencies.

7.8 Thread Synchronization and Kernel Hoards
As mentioned in §4.4, our machinery for addressing pointers
held ephemerally or hoarded by the kernel on behalf of a
user program is crude. The necessity to wait for system
calls to complete or abort and the need to interact with (the
locks within) each hoarding subsystem create long tails of
latency for revocation phases. In some cases, these tails span
many orders of magnitude, which may pose a challenge to
revocation’s use in even soft real-time systems. Two thrusts
of engineering effort may be able to reduce these tails:

1. Allowing system calls that do not take pointers or
whose pointer arguments are not revoked and are to
flat data (without pointers); these can continue in par-
allel with revocation.

2. Rewriting hoarding subsystems to use a generic in-
direction layer, with all hoarded pointers stored on
pages subject to revocation load traps. A variety of
mechanisms are available to ensure that the copying
and/or use of capabilities loaded from this layer are
atomic with respect to revocation.

8 Conclusion
We have demonstrated a new approach to global CHERI
capability revocation with better performance and lower
latencies than the prior state of the art. This expands the
set of workloads that can benefit from deterministic heap
UAF mitigation built atop this mechanism. In particular, we
have shown that Reloaded’s approach offers dramatically
29An “all tagged loads trap” configuration is specified in CHERI-RISC-V, but
is, we believe, not yet completely implemented [52, §4.3.12].

improved tail latencies for request-based workloads, as ex-
emplified by pgbench, while also improving overheads ex-
perienced by batch workloads. We have outlined next steps,
ranging from software engineering to novel architecture, to
continue this work.

9 Acknowledgements
We are deeply indebted to Alfredo Mazzinghi for his help
with the gRPC benchmark. The CHERI and Morello efforts
are possible only with the collaboration of a community
of people far too numerous to name here, but we thank
the giants upon whose shoulders we stand. Our anonymous
reviewers and our shepherd, MartinMaas, provided excellent
feedback, and we tried to improve the work correspondingly.

This work was supported by the Innovate UK project Dig-
ital Security by Design (DSbD) Technology Platform Proto-
type, 105694, and by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR0011-18-C-0016
(“ECATS”) and Contract No. HR0011-23-C-0031 ("MTSS").
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the Defense Advanced
Research Projects Agency (DARPA). Distribution Statement
A. Approved for public release: distribution is unlimited. For
the purpose of open access, the authors have applied a Cre-
ative Commons Attribution (CC BY) license to the accepted
version of this manuscript.

10 Availability
We have incorporated a variant of Reloaded using the mrs
shim and a lightly modified jemalloc into the 23.11 release
of CheriBSD. It is available at https://www.CheriBSD.org and
can be used on shipping prototype Arm Morello hardware.

References
[1] Benchmarking | grpc. URL: https://grpc.io/docs/guides/

benchmarking/.
[2] PostgreSQL. URL: https://www.postgresql.org/.
[3] PostgreSQL 9.6 CHERI port. URL: https://github.com/CTSRD-CHERI/

postgres/tree/96-cheri.
[4] PostgreSQL pgbench benchmark. URL: https://www.postgresql.org/

docs/9.6/pgbench.html.
[5] Advanced Micro Devices, Inc. AMD SEV-SNP: Strengthening VM

isolation with integrity protection and more, January 2020. URL: https:
//www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-
vm-isolation-with-integrity-protection-and-more.pdf.

[6] Saar Amar, Tony Chen, David Chisnall, Felix Domke, Nathaniel Filardo,
Kunyan Liu, Robert Norton-Wright, Yucong Tao, Robert N. M. Watson,
and Hongyan Xia. Cheriot: Rethinking security for low-cost embedded
systems. Technical Report MSR-TR-2023-6, Microsoft, February 2023.
URL: https://www.microsoft.com/en-us/research/publication/cheriot-
rethinking-security-for-low-cost-embedded-systems/.

[7] Saar Amar, David Chisnall, Tony Chen, Nathaniel Filardo Wesley, Ben
Laurie, Kunyan Liu, Robert Norton, Simon W. Moore, Yucong Tao,
Robert N. M. Watson, and Hongyan Xia. CHERIoT: Complete memory
safety for embedded devices. In proceedings of the 56th IEEE/ACM Inter-
national Symposium on Microarchitecture. Association for Computing

265

https://www.CheriBSD.org
https://grpc.io/docs/guides/benchmarking/
https://grpc.io/docs/guides/benchmarking/
https://www.postgresql.org/
https://github.com/CTSRD-CHERI/postgres/tree/96-cheri
https://github.com/CTSRD-CHERI/postgres/tree/96-cheri
https://www.postgresql.org/docs/9.6/pgbench.html
https://www.postgresql.org/docs/9.6/pgbench.html
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.microsoft.com/en-us/research/publication/cheriot-rethinking-security-for-low-cost-embedded-systems/
https://www.microsoft.com/en-us/research/publication/cheriot-rethinking-security-for-low-cost-embedded-systems/


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Filardo et al.

Machinery, Oct 2023. doi:10.1145/3613424.3614266.
[8] A. W. Appel, J. R. Ellis, and K. Li. Real-time concurrent collection

on stock multiprocessors. SIGPLAN Not., 23(7):11–20, jun 1988. doi:
10.1145/960116.53992.

[9] Arm Inc. Arm architecture reference manual for a-profile architecture.
URL: https://developer.arm.com/documentation/ddi0487/latest/.

[10] Arm Inc. Morello program. URL: https://www.arm.com/architecture/
cpu/morello.

[11] Arm Limited. Morello pure capability kernel user Linux
ABI specification, August 2023. URL: https://git.morello-
project.org/morello/kernel/linux/-/wikis/Morello-pure-capability-
kernel-user-Linux-ABI-specification.

[12] Thomas Bauereiss, Brian Campbell, Thomas Sewell, Alasdair Arm-
strong, Lawrence Esswood, Ian Stark, Graeme Barnes, Robert N. M.
Watson, and Peter Sewell. Verified security for the Morello capability-
enhanced prototype Arm architecture. Technical Report UCAM-
CL-TR-959, University of Cambridge, Computer Laboratory, Septem-
ber 2021. URL: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-
959.pdf, doi:10.48456/tr-959.

[13] Joe Bialek, Ken Johnson, Matt Miller, and Tony Chen. Security analysis
of memory tagging, 2020. URL: https://github.com/microsoft/MSRC-
Security-Research/blob/master/papers/2020/Security%20analysis%
20of%20memory%20tagging.pdf.

[14] Hans-J. Boehm, Alan J. Demers, and Scott Shenker. Mostly parallel
garbage collection. In Proceedings of the ACM SIGPLAN 1991 Confer-
ence on Programming Language Design and Implementation, PLDI ’91,
page 157–164, New York, NY, USA, 1991. Association for Computing
Machinery. doi:10.1145/113445.113459.

[15] A. M. Cheadle, A. J. Field, S. Marlow, S. L. Peyton Jones, and R. L.
While. Non-Stop Haskell. SIGPLAN Not., 35(9):257–267, sep 2000.
doi:10.1145/357766.351265.

[16] C. J. Cheney. A nonrecursive list compacting algorithm. Commun.
ACM, 13(11):677–678, nov 1970. doi:10.1145/362790.362798.

[17] The Chromium Team. Memory safety. URL: https://www.chromium.
org/Home/chromium-security/memory-safety.

[18] Austin Clements and Rick Hudson. Proposal: Eliminate STW stack
re-scanning, October 2016. URL: https://github.com/golang/proposal/
blob/master/design/17503-eliminate-rescan.md.

[19] Cliff Click, Gil Tene, andMichael Wolf. The pauseless GC algorithm. In
Proceedings of the 1st ACM/USENIX International Conference on Virtual
Execution Environments, VEE ’05, page 46–56, New York, NY, USA,
2005. Association for Computing Machinery. doi:10.1145/1064979.
1064988.

[20] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. Oscar:
A practical Page-Permissions-Based scheme for thwarting dangling
pointers. In 26th USENIX Security Symposium (USENIX Security 17),
pages 815–832, Vancouver, BC, August 2017. USENIX Association.
URL: https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/dang.

[21] Data61 Trustworthy Systems Team. sel4 reference manual version
12.1.0. URL: https://sel4.systems/Info/Docs/seL4-manual-latest.pdf.

[22] Brooks Davis, Robert N. M. Watson, Alexander Richardson, Peter G.
Neumann, Simon W. Moore, John Baldwin, David Chisnall, Jessica
Clarke, Nathaniel Wesley Filardo, Khilan Gudka, Alexandre Joannou,
Ben Laurie, A. Theodore Markettos, J. Edward Maste, Alfredo Mazz-
inghi, Edward Tomasz Napierala, Robert M. Norton, Michael Roe,
Peter Sewell, Stacey Son, and Jonathan Woodruff. CheriABI: Enforc-
ing valid pointer provenance and minimizing pointer privilege in
the POSIX C run-time environment. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’19, page 379–393,
New York, NY, USA, 2019. Association for Computing Machinery.
URL: https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201904-
asplos-cheriabi.pdf, doi:10.1145/3297858.3304042.

[23] Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan Woodruff,
Sam Ainsworth, Lucian Paul-Trifu, Brooks Davis, Hongyan Xia,
Edward Tomasz Napierala, Alexander Richardson, John Baldwin,
David Chisnall, Jessica Clarke, Khilan Gudka, Alexandre Joannou,
A. Theodore Markettos, Alfredo Mazzinghi, Robert M. Norton, Michael
Roe, Peter Sewell, Stacey Son, Timothy M. Jones, Simon W. Moore,
Peter G. Neumann, and Robert N. M. Watson. Cornucopia: Tem-
poral safety for CHERI heaps. In 2020 IEEE Symposium on Se-
curity and Privacy (SP), pages 1507–1524, Los Alamitos, CA, USA,
5 2020. IEEE Computer Society. URL: https://www.cl.cam.ac.uk/
research/security/ctsrd/pdfs/2020oakland-cornucopia.pdf, doi:10.
1109/SP40000.2020.00098.

[24] Christine H. Flood, Roman Kennke, Andrew Dinn, Andrew Haley,
and Roland Westrelin. Shenandoah: An open-source concurrent com-
pacting garbage collector for OpenJDK. In Proceedings of the 13th
International Conference on Principles and Practices of Programming
on the Java Platform: Virtual Machines, Languages, and Tools, PPPJ
’16, New York, NY, USA, 2016. Association for Computing Machinery.
doi:10.1145/2972206.2972210.

[25] Brett Gutstein. CHERI Malloc Revocation Shim. URL: https://github.
com/CTSRD-CHERI/mrs.

[26] Brett Gutstein. Memory safety with CHERI capabilities: security analy-
sis, language interpreters, and heap temporal safety. Technical Report
UCAM-CL-TR-975, University of Cambridge, Computer Laboratory,
November 2022. URL: https://www.cl.cam.ac.uk/techreports/UCAM-
CL-TR-975.pdf, doi:10.48456/tr-975.

[27] John L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH
Comput. Archit. News, 34(4), September 2006.

[28] Urs Hölzle. A fast write barrier for generational garbage collectors. In
Proceedings of the OOPSLA‘93 Workshop on Garbage Collection, October
1993. URL: https://bibliography.selflanguage.org/write-barrier.html.

[29] Lorenz Huelsbergen and Phil Winterbottom. Very concurrent mark-
&-sweep garbage collection without fine-grain synchronization. In
Proceedings of the 1st International Symposium onMemoryManagement,
ISMM ’98, page 166–175, New York, NY, USA, 1998. Association for
Computing Machinery. doi:10.1145/286860.286878.

[30] A. Joannou, J. Woodruff, R. Kovacsics, S. W. Moore, A. Bradbury, H. Xia,
R. N. M. Watson, D. Chisnall, M. Roe, B. Davis, E. Napierala, J. Baldwin,
K. Gudka, P. G. Neumann, A. Mazzinghi, A. Richardson, S. Son, and
A. T. Markettos. Efficient Tagged Memory. In 2017 IEEE International
Conference on Computer Design (ICCD), pages 641–648, November 2017.
doi:10.1109/ICCD.2017.112.

[31] Mark Stuart Johnstone. Non-compacting memory allocation and real-
time garbage collection, December 1997. URL: https://proquest.com/
docview/304374180.

[32] Henry G. Baker Jr. List processing in real time on a serial computer.
Technical Report 139, MIT Artificial Intelligence Laboratory, 1977.
URL: https://dspace.mit.edu/handle/1721.1/41976.

[33] Paul Liétar, Theodore Butler, Sylvan Clebsch, Sophia Drossopoulou,
Juliana Franco, Matthew J. Parkinson, Alex Shamis, Christoph M. Win-
tersteiger, and David Chisnall. Snmalloc: A message passing allocator.
In Proceedings of the 2019 ACM SIGPLAN International Symposium on
Memory Management, ISMM 2019, pages 122–135, New York, NY, USA,
2019. ACM. doi:10.1145/3315573.3329980.

[34] Daiping Liu,Mingwei Zhang, andHainingWang. A robust and efficient
defense against use-after-free exploits via concurrent pointer sweeping.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’18, page 1635–1648, New York, NY,
USA, 2018. Association for Computing Machinery. doi:10.1145/
3243734.3243826.

[35] Matt Miller. Trends, challenges, and strategic shifts in the
software vulnerability mitigation landscape, February 2019.
URL: https://github.com/microsoft/MSRC-Security-Research/
blob/master/presentations/2019_02_BlueHatIL/2019_01%20-

266

https://doi.org/10.1145/3613424.3614266
https://doi.org/10.1145/960116.53992
https://doi.org/10.1145/960116.53992
https://developer.arm.com/documentation/ddi0487/latest/
https://www.arm.com/architecture/cpu/morello
https://www.arm.com/architecture/cpu/morello
https://git.morello-project.org/morello/kernel/linux/-/wikis/Morello-pure-capability-kernel-user-Linux-ABI-specification
https://git.morello-project.org/morello/kernel/linux/-/wikis/Morello-pure-capability-kernel-user-Linux-ABI-specification
https://git.morello-project.org/morello/kernel/linux/-/wikis/Morello-pure-capability-kernel-user-Linux-ABI-specification
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-959.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-959.pdf
https://doi.org/10.48456/tr-959
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf
https://doi.org/10.1145/113445.113459
https://doi.org/10.1145/357766.351265
https://doi.org/10.1145/362790.362798
https://www.chromium.org/Home/chromium-security/memory-safety
https://www.chromium.org/Home/chromium-security/memory-safety
https://github.com/golang/proposal/blob/master/design/17503-eliminate-rescan.md
https://github.com/golang/proposal/blob/master/design/17503-eliminate-rescan.md
https://doi.org/10.1145/1064979.1064988
https://doi.org/10.1145/1064979.1064988
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/dang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/dang
https://sel4.systems/Info/Docs/seL4-manual-latest.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201904-asplos-cheriabi.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201904-asplos-cheriabi.pdf
https://doi.org/10.1145/3297858.3304042
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2020oakland-cornucopia.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2020oakland-cornucopia.pdf
https://doi.org/10.1109/SP40000.2020.00098
https://doi.org/10.1109/SP40000.2020.00098
https://doi.org/10.1145/2972206.2972210
https://github.com/CTSRD-CHERI/mrs
https://github.com/CTSRD-CHERI/mrs
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-975.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-975.pdf
https://doi.org/10.48456/tr-975
https://bibliography.selflanguage.org/write-barrier.html
https://doi.org/10.1145/286860.286878
https://doi.org/10.1109/ICCD.2017.112
https://proquest.com/docview/304374180
https://proquest.com/docview/304374180
https://dspace.mit.edu/handle/1721.1/41976
https://doi.org/10.1145/3315573.3329980
https://doi.org/10.1145/3243734.3243826
https://doi.org/10.1145/3243734.3243826
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf


Cornucopia Reloaded ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%
20shifts%20in%20software%20vulnerability%20mitigation.pdf.

[36] M. L. Minsky. A LISP garbage collector algorithm using serial sec-
ondary storage. Technical Report AIM-058, MIT Artificial Intelligence
Lab, December 1963. URL: https://dspace.mit.edu/handle/1721.1/6080.

[37] R. M. Needham and R. D.H. Walker. The Cambridge CAP Computer
and its protection system. In Proceedings of the Sixth ACM Symposium
on Operating Systems Principles, SOSP ’77, page 1–10, New York, NY,
USA, 1977. Association for Computing Machinery. doi:10.1145/
800214.806541.

[38] Oracle Inc. Hardware-assisted checking using Silicon Secured Memory
(SSM), 2015. URL: https://docs.oracle.com/cd/E37069_01/html/E37085/
gphwb.html.

[39] Matthew J. Parkinson. Hardening snmalloc.
URL: https://github.com/microsoft/snmalloc/tree/
9d4466093a7c42e4fe43e032aeca356674d6e55c/docs/security.

[40] Pekka P. Pirinen. Barrier techniques for incremental tracing. In
Proceedings of the 1st International Symposium onMemoryManagement,
ISMM ’98, page 20–25, New York, NY, USA, 1998. Association for
Computing Machinery. doi:10.1145/286860.286863.

[41] Filip Pizlo, Erez Petrank, and Bjarne Steensgaard. A study of concurrent
real-time garbage collectors. SIGPLAN Not., 43(6):33–44, jun 2008.
doi:10.1145/1379022.1375587.

[42] David D. Redell. Naming and Protection in Extendable Operating Sys-
tems. PhD thesis, University of California, Berkeley, September 1974.
URL: https://dspace.mit.edu/handle/1721.1/149438.

[43] Chris Rohlf. Isolation alloc heap allocator security fea-
ture comparison. URL: https://github.com/struct/isoalloc/
blob/947f3bc91c3a61e3ec85bff8f43034d2a59c897d/SECURITY_
COMPARISON.MD.

[44] Peter David Rugg. Efficient spatial and temporal safety for microcon-
trollers and application-class processors. Technical Report UCAM-
CL-TR-984, University of Cambridge, Computer Laboratory, July 2023.
URL: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-984.pdf,
doi:10.48456/tr-984.

[45] The Rust Reference. 1.71.0 edition. URL: https://doc.rust-lang.org/1.71.
0/reference.

[46] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. Addresssanitizer: A fast address sanity checker. In
USENIX ATC 2012, 2012. URL: https://www.usenix.org/conference/
usenixfederatedconferencesweek/addresssanitizer-fast-address-
sanity-checker.

[47] Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyapnikov, Vlad
Tsyrklevich, and Dmitry Vyukov. Memory Tagging and how it im-
proves C/C++ memory safety. URL: http://arxiv.org/abs/1802.09517,
arXiv:1802.09517.

[48] Jangseop Shin, Donghyun Kwon, Jiwon Seo, Yeongpil Cho, and Yun-
heung Paek. CRCount: Pointer invalidation with reference counting
to mitigate use-after-free in legacy c/c++. NDSS ’19. Internet Society,
2019. doi:10.14722/ndss.2019.23541.

[49] Gil Tene. How NOT to Measure Latency. In Low Latency Summit, 2013.
A version of this presentation is available at https://www.infoq.com/
presentations/latency-pitfalls/.

[50] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. DangSan:
Scalable use-after-free detection. In Proceedings of the Twelfth European
Conference on Computer Systems, EuroSys ’17, page 405–419, New
York, NY, USA, 2017. Association for Computing Machinery. doi:
10.1145/3064176.3064211.

[51] Robert N. M. Watson, Jessica Clarke, Peter Sewell, Jonathan Woodruff,
Simon W. Moore, Graeme Barnes, Richard Grisenthwaite, Kathryn
Stacer, Silviu Baranga, and Alexander Richardson. Early performance
results from the prototype Morello microarchitecture. Technical Re-
port UCAM-CL-TR-986, University of Cambridge, Computer Labora-
tory, September 2023. doi:10.48456/tr-986.

[52] Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael
Roe, Hesham Almatary, Jonathan Anderson, John Baldwin, Graeme
Barnes, David Chisnall, Jessica Clarke, Brooks Davis, Lee Eisen,
Nathaniel Wesley Filardo, Franz A. Fuchs, Richard Grisenthwaite,
Alexandre Joannou, Ben Laurie, A. Theodore Markettos, Simon W.
Moore, Steven J. Murdoch, Kyndylan Nienhuis, Robert Norton, Alexan-
der Richardson, Peter Rugg, Peter Sewell, Stacey Son, and Hongyan Xia.
Capability Hardware Enhanced RISC Instructions: CHERI Instruction-
Set Architecture (Version 9). Technical Report UCAM-CL-TR-987,
University of Cambridge, Computer Laboratory, September 2023.
doi:10.48456/tr-987.

[53] Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael
Roe, Hesham Almatary, Jonathan Anderson, John Baldwin, Graeme
Barnes, David Chisnall, Jessica Clarke, Brooks Davis, Lee Eisen,
Nathaniel Wesley Filardo, Richard Grisenthwaite, Alexandre Joan-
nou, Ben Laurie, A. Theodore Markettos, Simon W. Moore, Steven J.
Murdoch, Kyndylan Nienhuis, Robert Norton, Alexander Richardson,
Peter Rugg, Peter Sewell, Stacey Son, and Hongyan Xia. Capability
Hardware Enhanced RISC Instructions: CHERI Instruction-Set Archi-
tecture (Version 8). Technical Report UCAM-CL-TR-951, University of
Cambridge, Computer Laboratory, oct 2020. URL: https://www.cl.cam.
ac.uk/techreports/UCAM-CL-TR-951.pdf, doi:10.48456/tr-951.

[54] Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael
Roe, Hesham Almatary, Jonathan Anderson, John Baldwin, David
Chisnall, Brooks Davis, Nathaniel Wesley Filardo, Alexandre Joannou,
Ben Laurie, Simon W. Moore, Steven J. Murdoch, Kyndylan Nienhuis,
Robert Norton, Alex Richardson, Peter Rugg, Peter Sewell, Stacey Son,
and Hongyan Xia. Capability Hardware Enhanced RISC Instructions:
CHERI Instruction-Set Architecture (Version 7). Technical Report
UCAM-CL-TR-927, University of Cambridge, Computer Laboratory,
10 2018. URL: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-
927.pdf, doi:10.48456/tr-927.

[55] Robert N. M. Watson, Alexander Richardson, Brooks Davis, John
Baldwin, David Chisnall, Jessica Clarke, Nathaniel Filardo, Simon W.
Moore, Edward Napierala, Peter Sewell, and Peter G. Neumann.
CHERI C/C++ Programming Guide. Technical Report UCAM-CL-
TR-947, University of Cambridge, Computer Laboratory, June 2020.
URL: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf,
doi:10.48456/tr-947.

[56] P. R. Wilson and T. G. Moher. A “card-marking” scheme for controlling
intergenerational references in generation-based garbage collection
on stock hardware. SIGPLAN Not., 24(5):87–92, may 1989. doi:10.
1145/66068.66077.

[57] Jonathan Woodruff, Alexandre Joannou, Hongyan Xia, Anthony Fox,
Robert Norton-Wright, Thomas Bauereiss, David Chisnall, Brooks
Davis, Khilan Gudka, Nathaniel Filardo, A. Theodore Markettos,
Michael Roe, Peter G. Neumann, Robert N. M. Watson, and Simon W.
Moore. Cheri concentrate: Practical compressed capabilities. IEEE
Transactions on Computers, April 2019. URL: https://www.cl.cam.ac.
uk/research/security/ctsrd/pdfs/2019tc-cheri-concentrate.pdf.

[58] Hongyan Xia, Jonathan Woodruff, Sam Ainsworth, Nathaniel W.
Filardo, Michael Roe, Alexander Richardson, Peter Rugg, Peter G.
Neumann, Simon W. Moore, Robert N. M. Watson, and Timo-
thy M. Jones. CHERIvoke: Characterising Pointer Revocation us-
ing CHERI Capabilities for Temporal Memory Safety. In Proceed-
ings of the 52nd IEEE/ACM International Symposium on Microar-
chitecture (IEEE MICRO 2019), MICRO-52, Columbus, Ohio, USA,
10 2019. URL: https://www.cl.cam.ac.uk/research/security/ctsrd/
pdfs/201910micro-cheri-temporal-safety.pdf, doi:10.1145/3352460.
3358288.

[59] Albert Mingkun Yang and Tobias Wrigstad. Deep dive into zgc: A
modern garbage collector in openjdk. ACM Trans. Program. Lang. Syst.,
44(4), sep 2022. doi:10.1145/3538532.

267

https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://dspace.mit.edu/handle/1721.1/6080
https://doi.org/10.1145/800214.806541
https://doi.org/10.1145/800214.806541
https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html
https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html
https://github.com/microsoft/snmalloc/tree/9d4466093a7c42e4fe43e032aeca356674d6e55c/docs/security
https://github.com/microsoft/snmalloc/tree/9d4466093a7c42e4fe43e032aeca356674d6e55c/docs/security
https://doi.org/10.1145/286860.286863
https://doi.org/10.1145/1379022.1375587
https://dspace.mit.edu/handle/1721.1/149438
https://github.com/struct/isoalloc/blob/947f3bc91c3a61e3ec85bff8f43034d2a59c897d/SECURITY_COMPARISON.MD
https://github.com/struct/isoalloc/blob/947f3bc91c3a61e3ec85bff8f43034d2a59c897d/SECURITY_COMPARISON.MD
https://github.com/struct/isoalloc/blob/947f3bc91c3a61e3ec85bff8f43034d2a59c897d/SECURITY_COMPARISON.MD
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-984.pdf
https://doi.org/10.48456/tr-984
https://doc.rust-lang.org/1.71.0/reference
https://doc.rust-lang.org/1.71.0/reference
https://www.usenix.org/conference/usenixfederatedconferencesweek/addresssanitizer-fast-address-sanity-checker
https://www.usenix.org/conference/usenixfederatedconferencesweek/addresssanitizer-fast-address-sanity-checker
https://www.usenix.org/conference/usenixfederatedconferencesweek/addresssanitizer-fast-address-sanity-checker
http://arxiv.org/abs/1802.09517
https://arxiv.org/abs/1802.09517
https://doi.org/10.14722/ndss.2019.23541
https://www.infoq.com/presentations/latency-pitfalls/
https://www.infoq.com/presentations/latency-pitfalls/
https://doi.org/10.1145/3064176.3064211
https://doi.org/10.1145/3064176.3064211
https://doi.org/10.48456/tr-986
https://doi.org/10.48456/tr-987
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf
https://doi.org/10.48456/tr-951
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf
https://doi.org/10.48456/tr-927
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf
https://doi.org/10.48456/tr-947
https://doi.org/10.1145/66068.66077
https://doi.org/10.1145/66068.66077
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2019tc-cheri-concentrate.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2019tc-cheri-concentrate.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201910micro-cheri-temporal-safety.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201910micro-cheri-temporal-safety.pdf
https://doi.org/10.1145/3352460.3358288
https://doi.org/10.1145/3352460.3358288
https://doi.org/10.1145/3538532


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Filardo et al.

[60] Tong Zhang, Dongyoon Lee, and Changhee Jung. Bogo: Buy spa-
tial memory safety, get temporal memory safety (almost) free. In
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,

ASPLOS ’19, page 631–644, New York, NY, USA, 2019. Association for
Computing Machinery. doi:10.1145/3297858.3304017.

268

https://doi.org/10.1145/3297858.3304017



